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What is the Rolling Shutter Effect?

GS - Global shutter RS - Rolling shutter
(most cameras)

youtu.be/7TGKFdrY9aw



How does the Rolling Shutter work?

The good
§ Higher frame rate 
§ Longer exposure time
§ Cheaper and easier to 

manufacture

The bad
§ Image distortions
§ Non-perspective projections

• Images scanned line by line • The effect 



How does the Rolling Shutter look?

And the ugly...
Camera
Rotation

Camera
translation

GS+flash RS+flash

http://www.red.com/learn/red-101/global-rolling-shutter

String
oscillations

Object motion

Illumination 
change

Illumination 
change



Rolling shutter is everywhere

n Most of cameras:  cellphones, industrial cams, … professional DSLR 

n Affects both videos AND single images
§ Difference between top and bottom can be ~1/30s



3D Reconstruction with Rolling Shutter

3D reconstruction from RS images

Feature 
detection Matching Relative 

pose
Absolute 

pose Triangulation Bundle 
adjustment

... degraded if ignored

Feature 
detection Matching Relative 

pose
Absolute 

pose Triangulation Bundle 
adjustment

Global shutter (Canon) Rolling shutter (iPhone 4)



Feature 
detection Matching Relative 

pose
Absolute 

pose Triangulation Bundle 
adjustment

Absolute Camera Pose with Rolling Shutter

Absolute camera pose with RS

1. C. Albl, Z. Kukelova, T Pajdla.
R6P - Rolling Shutter Absolute Camera Pose. CVPR 2015

2. C. Albl, Z. Kukelova, T Pajdla. 
RS Absolute Camera Pose Problem with known Vertical Direction. ICCV 2015

3. Z Kukelova, C Albl, A Sugimoto, T Pajdla. 
Linear solution to the minimal absolute pose rolling shutter problem. ACCV 2018

4. C Albl, Z Kukelova, V Larsson, T Pajdla. 
Rolling Shutter Camera Absolute Pose. TPAMI 2019



Absolute Camera Pose with Rolling Shutter

3D points 2D points

3 correspondences
[Haralick CVPR 1991]

[Wut JMIV 2006]
[Quan PAMI 1999]

[Triggs IJCV 1999]
[Lepetit IJCV 2009][Zhi MMRC 2002]

Perspective camera – P3P



Absolute Camera Pose with Rolling Shutter

[Haralick CVPR 1991]
[Wut JMIV 2006]

[Quan PAMI 1999]
[Triggs IJCV 1999]

[Lepetit IJCV 2009][Zhi MMRC 2002]

3 correspondences

Perspective camera – P3P
This work = R6P

6 correspondences

Rolling shutter camera – R6P



RANSAC: Optimization scheme to deal with gross errors

1. Generate random tuples of 2D-3D matches

2. Compute R, C by solving algebraic equations                      

3. Count the number of good matches

Return the largest set of good matches

Enumerating all subsets replaced by checking only some of them

3D points 2D points
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Why to be fast?

• Many samples needed to be sure to find a good sample!

Gross-error-free data fraction [%]
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To find a gross-error-free sample with 95% probability we 
have to try at least the following number of samples:

Solving time:   micro-mili seconds



How to be fast?

How to be fast?

1. Specialized solving methods

2. Assume generic data

3. Use tricks, optimize, hard code, …



Solvers do not (much) differ from one problem to another.

® Solver is made out by solving a single concrete system
and then used on other systems

® This works around generic solutions

a polynomial
system used
to build the solver …

… it works here

Many problems are generic

parameter space



Strategy of fast solving

3. Create an elimination template for constructing a 
multiplication matrix       of multiplication by a suitable 
polynomial                            (an unknown) in a finite-
dimensional factor ring . 

Offline phase (may be slow)

1. Fabricate a concrete generic example of a polynomial 
system (generating 0-dim radial ideal I)

2. Analyze the system by a generic method (Macaulay2, 
FGb, …) to get the degree, (standard monomial) basis in 
R/I, …

4. Implement efficiently in floating points, optimize, test, …
(vary ordering, basis selection, …)



Automatic generator of ``minimal solvers’’

• Z Kukelova, M Bujnak, T Pajdla. 
Automatic Generator of Minimal Problem Solvers. ECCV 2008. 

• V Larsson, K Astrom, M Oskarsson.
Efficient Solvers for Minimal Problems by Syzygy-Based Reduction. CVPR 2017.

• V Larsson, M Oskarsson, K Astrom, A Wallis, Z Kukelova, T Pajdla. 
Beyond Grobner Bases: Basis Selection for Minimal Solvers. CVPR 2018



Online (must be fast)

1. Fill the elimination template to get matrix 

2. Solve numerically by finding eigenvectors of 
(or get a univariate poly and use real root bracketing)

Strategy of fast solving



Rolling Shutter Camera Projection

Standard (calibrated) perspective projection

RS camera undergoing motion during image capture

Camera pose changes for every row

How to model           and          ?

Picture from Meingast et al.



Motion during capture

Rolling Shutter Camera Projection

[Hedborg CVPR-2012]

Solving in general leads to
complicated polynomials

We analyzed several models

• SLERP
• Cayley parameterization
• Linearized
• …
• Double linear model

Camera initial pose



Rolling Shutter Double-Linearized Projection

Camera initial pose

Motion during capture
known

Full projection model

Double-linearized projection model



Constructing R6P Solver

.

.

.

Six 3D-2D correspondences

6 unknown scale parameters lambda

18 equationsunknown



Constructing R6P Solver

to eliminate lambdasMultiply by 

12 linearly independent equations (12x16 matrix … 16 monomials) 

Matrix form 

= 0 



Constructing R6P Solver

Simplify by Gauss-Jordan elimination

C and t linear

6 equations, 6 unknowns v & w (16 monomials)

Solve for v & w  back-substitution C & t



Constructing R6P Solver

The remaining 16 monomials are bilinear in v and w

We can write                            , where          is a 6x4 matrix 

4x4 subdeterminants of        must be zero

15 equations in 3 variables and 35 monomials

Use automatic generator of Gröbner basis solvers [Kukelova ECCV 2008] to 
solve for     

0.3ms in C++ (Eigen)



Double linearization … an initialization needed

Linearization of rotation

OK – small rotation during the capture NOT OK – rotation can be arbitrary

P3P R6P

R6PIMU

Solution:



Real Experiments

P3P inliers

R6P inliers

788

1152

Data from
Hedborg et.al,
CVPR12



Real experiments

P3P (inliers in red) R6P (inliers in green)



Real Experiments



Corresponds to quaternion where

v = rotation axis as a unit vector scaled by rotations by 180°prohibited 

Direct R6P without initialization

Cayley Parameterization

Motion during capture
known



• Eliminate C and t

• Write remaining equations in w and v as

• Again the 15 determinants of          must be 0

• Now 15 equations of degree 8 and 165 monomials

• PROBLEM – a family two-dimensional solutions introduced

• They correspond to and satisfy

• The new solutions are all complex and do not correspond to a valid R

• LUCKILY – all 15 equations divisible by   

• Using [Larsson et.al. 2017]  elimination template 99x163 and 64 solutions

• Using Sturm sequences to find the roots – 1.4 ms runtime for the whole solver

Direct R6P without initialization



• QUESTION – Can we just initialize with P3P and solve for RS parameters 
using non-linear optimization techniques?

• ANSWER – It depends

R6P vs non-linear RS refinement

P3P+LO R6PP3P



• QUESTION – Can we just initialize with P3P and solve for RS parameters 
using non-linear optimization techniques?

• ANSWER – It depends

R6P vs non-linear RS refinement

P3P+LO R6P

Fraction of inliers (the higher, the better)



Alternating solvers

There is a structure in the problem → we can do it more efficiently

4 Z. Kukelova et al.

time and hence at a di↵erent position when the camera is moving during the
image capture. Camera rotation R and translation C are therefore functions of
the image row ri being captured

�ixi = �i

2

4
ri
ci
1

3

5 = R(ri)Xi + C(ri). (2)

In recent work [18, 3, 16, 13, 1, 14], it was shown that for the short time-span
of a frame capture, the camera translation C(ri) can be approximated with a
simple constant velocity model as

C(ri) = C+ (ri � r0)t, (3)

where C is the camera center corresponding to the perspective case, i.e. when
ri = r0, and t is the translational velocity.

The camera rotation R(ri) can be decomposed into two rotations to represent
the camera initial orientation by Rv and the change of orientation during frame
capture by Rw(ri � r0).

In [16, 18], it was observed that it is usually su�cient to linearize Rw(ri � r0)
around the initial rotation R(v) using the first order Taylor expansion such that

�i

2

4
ri
ci
1

3

5 = (I+ (ri � r0)[w]⇥) RvXi + C+ (ri � r0)t, (4)

where [w]⇥ is a skew-symmetric matrix of vector w. The model (4), with lin-
earized rolling shutter rotation, will deviate from the reality with increasing
rolling shutter e↵ect. Still, it is usually su�cient for most of the rolling shutter
e↵ects present in real situations.

In [18], a linear approximation to the camera orientation Rv was used to solve
the rolling shutter absolute pose problem from a minimal number of six 2D-3D
point correspondences. This model had the form

�i
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4
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ci
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3

5 = (I+ (ri � r0)[w]⇥) (I+ [v]⇥) Xi + C+ (ri � r0)t. (5)

The drawback of the model (5) is that Rv is often not really small and thus
cannot be really linearized. Thus, the accuracy of the model is dependent on
the initial orientation of the camera in the world frame. In [18], it was shown
that the standard P3P algorithm [7] is able to estimate camera orientation with
su�cient precision even for high camera rotation velocity and therefore P3P can
be used to bring the camera rotation matrix close to the identity.

The model (5) leads to a system of six quadratic equations in six unknowns.
This system has 20 solutions and it was solved in [18] using the Gröbner ba-
sis method [19, 20]. The Gröbner basis solver [18] for the R6P rolling shutter
problem requires the G-J elimination of a 196⇥ 216 matrix and computing the
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1. Full formulation (Intractable)

3. Rotation during the capture linearized (No initialization needed, Slow)

2. Rotation during the capture & initial linearized (P3P initialization, Slow)

4. Alternating between 2 linear problems (P3P initialization, FAST)
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R6Pv,C solver. Moreover, in many applications, e.g. cameras on a car, cameras
often undergo only a translation motion, and therefore w is negligible. In such
situations, the first iteration of the R6Pv,C,t solver already provides very precise
estimates of the camera parameters.

Another approach is to use only the v and C estimated by R6Pv,C,t solver and
in the second step re-estimate the rolling shutter translation t together with the
rolling shutter rotation w using the linear R6Pw,t solver. The solver based on this
strategy will be referred to as R6Pw,t

v,C,t.

The resulting solvers R6Pw
v,C,t and R6Pw,t

v,C,t solver, again, alternates between
the two linear solvers until the desired precision is obtained or a maximum
number of iterations is reached. We show in the experiments that those solvers
outperform R6P in the case of pure translational motion.

3.3 R6P
[v]⇥
v,C,w,t solver

Solver R6P[v]⇥
v,C,w,t estimates all unknown parameters v, C, w and t together in one

step. To avoid non-linear equations in (5), the solver fixes [v]⇥ that appears in
the nonlinear term [w]⇥[v]⇥ in (5). Thus the solver solves equations

�i

2

4
ri
ci
1

3

5 = (I+ (ri � r0)[w]⇥) Xi+[v]⇥Xi+(ri�r0)[w]⇥[v̂]⇥Xi+C+(ri�r0)t, (6)

where v̂ is a fixed vector.
In the first iteration v̂, is set to the zero vector and the term (ri�r0)[w]⇥[v̂]⇥Xi

in (6) disappears. This is usually a su�cient approximation. The explanation
for this is as follows. After the initialization with P3P the camera rotation is
already close to the identity and in real applications the rolling shutter rotation
w during the capture is usually small. Therefore, the nonlinear term [w]⇥[v]⇥ is
small, sometimes even negligible, and thus it can be considered to be zero in the
first iteration.

In the remaining iterations we fix v̂ in the (ri � r0)[w]⇥[v̂]⇥Xi term to be

equal to the vi estimated in the previous iteration of the R6P[v]⇥
v,C,w,t solver. Note

that we fix only v that appears in the nonlinear term [w]⇥[v]⇥ and there is still
another term with v in (6) from which a new v can be estimated. Therefore,
all parameters are estimated at each step which is a novel alternating strategy.
To our knowledge, all existing algorithms that are based on the alternating
optimization approach completely fix a subset of the variables, meaning that
they cannot estimate all the variables in one step.

The R6P[v]⇥
v,C,w,t in each iteration solves only one system of 12 linear equations

in 12 unknowns and is therefore very e�cient. In experiments we will show that

the R6P[v]⇥
v,C,w,t provides very precise estimates already after 1 iteration and after

5 iterations it has visually the same performance as the state-of-the-art R6P
solver [18].
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2. Rotation during the capture & initial linearized (P3P initialization, Slow)

4. Alternating between 2 linear problems
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Fig. 5. Increasing the camera motion and estimating camera pose with all solvers being

initialized with P3P. R6P
[v]⇥
v,C,w,t and R9P now provide consistently excellent results,

comparable or outperforming those of R6P at a fraction of the computation cost.
R6Pw,t

v,C, R6Pw
v,C,t and R6Pw,t

v,C,t with 50 iterations now perform better than P3P, but
still not as good as the other RS solvers.

Table 1. Average timings on 2.5GHz i7 CPU per iteration for all used solvers.

solver P3P R6P R6P
[v]⇥
v,C,w,t R6Pw

v,C,t R6Pw,t
v,C,t R6Pw,t

v,C R9P
time per iteration 3µs 1700µs 10µs 24µs 30µs 27µs 20µs
max # of solutions 4 20 1 1 1 1 1

proved to be insu�cient in the first experiment, see Figure 1. Also, we set the

maximum number of iterations for R6P[v]⇥
v,C,w,t to 1, to demonstrate the potential

of this solver.
As seen in Figure 5, R6P[v]⇥

v,C,w,t is able to provide at least as good, or even
better, results than R6P after only a single iteration. This is a significant achieve-

ment since the computational cost of R6P[v]⇥
v,C,w,t is two orders of magnitude less

than of R6P. With 50 iterations the other iterative solvers now perform better
than P3P, but considering the computational cost of 50 iterations, which could
be even higher than that of a R6P we cannot recommend using them in such a
scenario.

Computation time The computation times for all the tested solvers are shown

in Table 1. One iteration of R6P[v]⇥
v,C,w,t is two orders of magnitude faster than R6P.

According to the experiments, even one iteration of R6P[v]⇥
v,C,w,t provides very

good results, comparable with R6P and 5 iterations always match the results
of R6P or even outperform them at 34⇥ the speed. Note that R9P can be

even faster than R6P[v]⇥
v,C,w,t because it is non-iterative and runs only once and is

therefore as fast as 2 iterations of R6P[v]⇥
v,C,w,t. One iteration of R6Pw,t

v,C, R6Pw
v,C,t

and R6Pw,t
v,C,t is around three times slower than R6P[v]⇥

v,C,w,t but still almost two
orders of magnitude faster than R6P.
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